Second-Moment Statistical Approach for Input Uncertainty Propagation and Robust Design Using CFD

Perry A. Newman

Lawrence L. Green

Clyde R. Gumbert

MDOB NASA LaRC

Michele M. Putko

Arthur C. Taylor III

Gene J.-W. Hou

Old Dominion University

ASCAC Methods Development Peer Review November 27-29, 2001

ASCoT Project (1998-2002)

<u>Aerospace Systems (Concept to Test)</u>

Project Vision

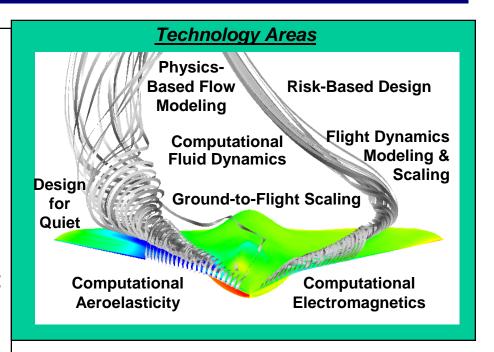
Physics-based modeling and simulation with sufficient speed and accuracy for validation and certification of advanced aerospace vehicle design in less than 1 year

Project Goal

 Provide next-generation analysis & design tools to increase confidence and reduce development time in aerospace vehicle designs

Objective

- Develop fast, accurate, and reliable analysis and design tools via fundamental technological advances in:
 - Physics-Based Flow Modeling
 - Fast, Adaptive, Aerospace Tools (CFD)
 - Ground-to-Flight Scaling
 - Time-Dependent Methods
 - Design for Quiet
 - Risk-Based Design w/ CFD & CSM



Benefit

- Increased Design Confidence
- Reduced Development Time

Outline

- Assumptions
- Second-moment statistical approach
- Quasi 1-D nozzle, Euler CFD
 - Input uncertainty propagation
 - Robust optimization
- Conclusions

Assumptions

- Only input parameter uncertainties contribute to output uncertainties; i.e., other uncertainty sources not considered
- Input parameters are
 - Statistically independent
 - Random
 - Normally distributed with
 - Mean values, $\overline{b_i}$
 - Standard deviations, σ_{b_i}

1st and 2nd- Order Taylor Series Approximations for Output F(b)

First-Order:
$$\mathbf{F}(\mathbf{b}) = \mathbf{F}(\overline{\mathbf{b}}) + \sum_{i=1}^{n} \frac{\partial \mathbf{F}}{\partial b_i} (b_i - \overline{b}_i)$$

Second-Order:
$$\mathbf{F}(\mathbf{b}) = \mathbf{F}(\overline{\mathbf{b}}) + \sum_{i=1}^{n} \frac{\partial \mathbf{F}}{\partial b_{i}} (b_{i} - \overline{b}_{i}) + \frac{1}{2!} \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial^{2} \mathbf{F}}{\partial b_{i} \partial b_{j}} (b_{i} - \overline{b}_{i}) (b_{j} - \overline{b}_{j})$$

where all derivatives are evaluated at the mean values, $\overline{\mathbf{b}}$.

 Note that efficient first- and second-derivatives are needed from CFD codes

Approximate Mean and Variance

FO FM:
$$\overline{\mathbf{F}} = \mathbf{F}(\overline{\mathbf{b}})$$

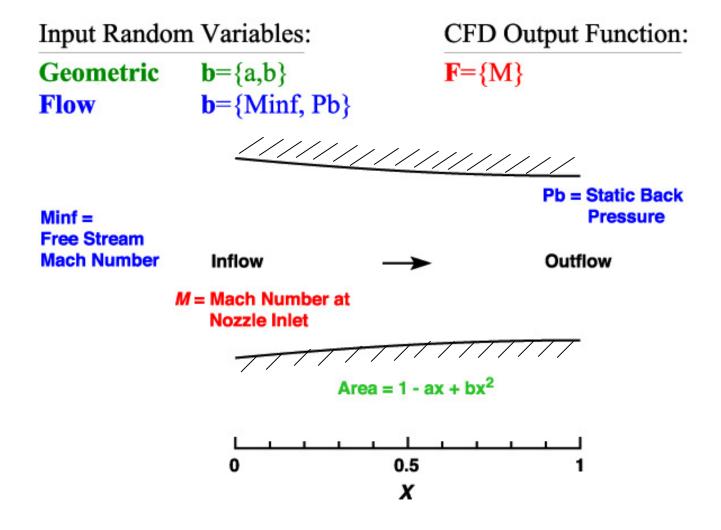
FO SM:
$$\sigma_{F^2} = \sum_{i=1}^{n} \left(\frac{\partial F}{\partial b_i} \sigma_{b_i} \right)$$

SO FM:
$$\overline{\mathbf{F}} = \mathbf{F}(\overline{\mathbf{b}}) + \frac{1}{2!} \sum_{i=1}^{n} \frac{\partial^{2} \mathbf{F}}{\partial b_{i}^{2}} \sigma_{b_{i}}^{2}$$

SO SM:
$$\sigma_{\mathbf{F}^2} = \sum_{i=1}^{n} \left(\frac{\partial \mathbf{F}}{\partial b_i} \sigma_{b_i}^2 \right) + \frac{1}{2!} \sum_{j=1}^{n} \sum_{i=1}^{n} \left(\frac{\partial^2 \mathbf{F}}{\partial b_i \partial b_j} \sigma_{b_i} \sigma_{b_j}^2 \right)$$

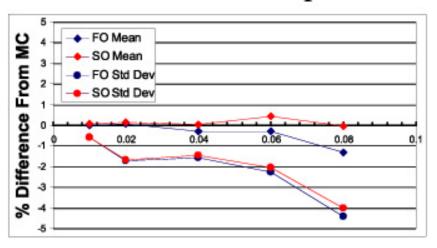
Quasi 1-D Euler Problem

Subsonic Nozzle Flow

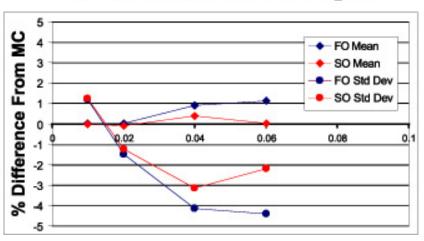


Comparison of Statistical Approximations vs. Monte Carlo Simulation

Geometric Example

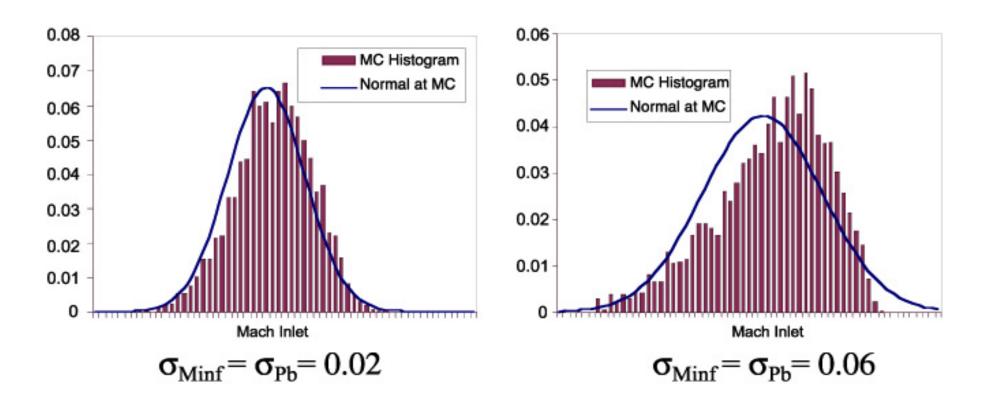


Flow Parameter Example



- For larger values of input parameters, second-order generally gives better predictions
- Approximations predict first moment more accurately than second moment

Probability Density Functions from Monte Carlo



- The Monte Carlo simulation histograms are compared with a normal distribution using the mean & standard deviation from the Monte Carlo simulations (graphically indistinguishable from FOSM & SOSM)
- The FOSM & SOSM results appear adequate for robust design but not for reliability-based design

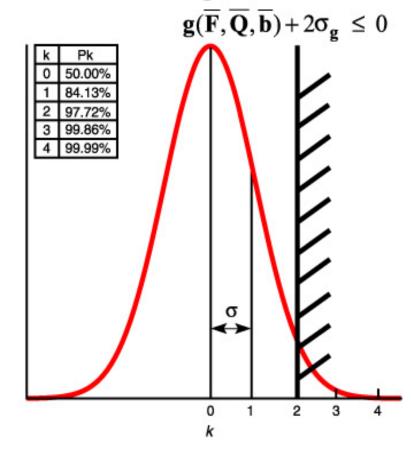
Robust Optimization

Objective function uncertain due to uncertain input variables

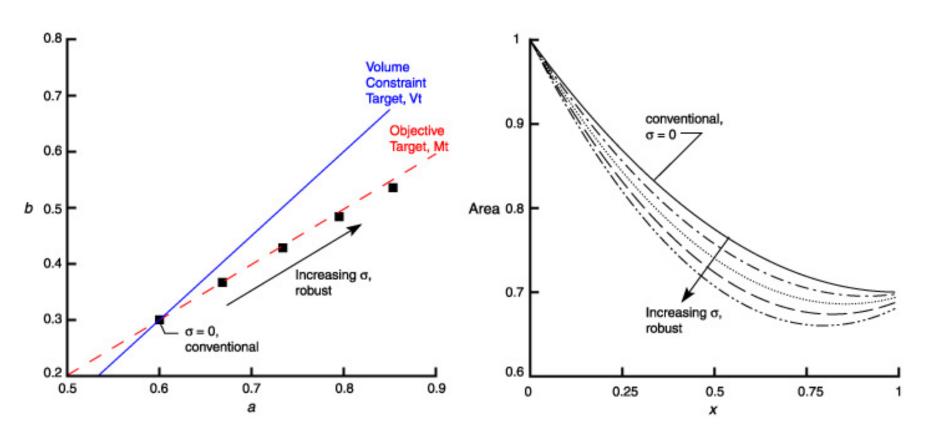
min Obj, Obj = Obj(
$$\overline{\mathbf{F}}, \sigma_{F}, \overline{\mathbf{Q}}, \overline{\mathbf{b}}$$
)
subject to
$$\mathbf{R}(\overline{\mathbf{Q}}, \overline{\mathbf{b}}) = 0$$

$$\mathbf{g}(\overline{\mathbf{F}}, \overline{\mathbf{Q}}, \overline{\mathbf{b}}) + k\sigma_{g} \leq 0$$

 kσ_g represents the desired safety factor for probabilistic constraint satisfaction



Robust Shape Optimization Results, Increasing σ , $P_k = P_1 = 84.13\%$



Design Space

Nozzle Area Distributions

Conclusions

(from present initial results)

- Demonstrated implementations of second moment approximate statistical method for input uncertainty propagation and gradient-based robust design in CFD
- Second-moment method appears applicable for robust design at reasonable uncertainty levels in random input parameters
- Propagated uncertainty appears as a probabilistic "safety factor" on constraints; when active, these constraints influence the optimization more than the propagated uncertainty appearing in the objective

References

- 1. Sherman, L., Taylor III, A., Green, L., Newman, P., Hou, G., and Korivi, M., "First-and Second-Order Aerodynamic Sensitivity Derivatives via Automatic Differentiation with Incremental Iterative Methods," *Journal of Computational Physics*, Vol. 129, No. 2, 1996, pp. 307-336.
- 2. Putko. M. M., Newman, P. A., Taylor III, A. C., and Green, L. L., "Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives," 15th AIAA CFD Conference, Anaheim, CA, June 2001, AIAA Paper 2001-2528.
- 3. Taylor III, A. C., Green, L. L., Newman, P. A., and Putko, M. M., "Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis," 15th AIAA CFD Conference, Anaheim, CA, June 2001, AIAA Paper 2001-2529.
- 4. Putko. M. M., Newman, P. A., Taylor III, A. C., and Green, L. L., "Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives," to appear in *Journal of Fluids Engineering*, March 2002, a special issue on quantifying uncertainty in CFD.